| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 
 | import tensorflow as tfimport numpy as np
 
 def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
 layer_name = 'layer%s' % n_layer
 with tf.name_scope("layer"):
 with tf.name_scope("weight"):
 Weights = tf.Variable(tf.random_normal([in_size,out_size]),name="W")
 tf.summary.histogram(layer_name+'/Weights',Weights)
 with tf.name_scope("biases"):
 biases = tf.Variable(tf.zeros([1, out_size])+0.1,name="b")
 tf.summary.histogram(layer_name+'/biases',biases)
 with tf.name_scope("Wx_plus_b"):
 Wx_plus_b = tf.matmul(inputs, Weights)+biases
 if activation_function == None:
 outputs = Wx_plus_b
 else:
 outputs = activation_function(Wx_plus_b)
 tf.summary.histogram(layer_name+'/outputs',outputs)
 return outputs
 
 x_data = np.linspace(-1,1,300)[:,np.newaxis]
 noise = np.random.normal(0,0.05,x_data.shape)
 y_data = np.square(x_data) - 0.5 + noise
 
 with tf.name_scope("inputs"):
 xs = tf.placeholder(tf.float32,[None,1],name="x_input")
 ys = tf.placeholder(tf.float32,[None,1],name="y_input")
 
 l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
 prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)
 
 with tf.name_scope("loss"):
 loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]),name="loss")
 tf.summary.scalar('loss',loss)
 with tf.name_scope("train"):
 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
 
 init = tf.global_variables_initializer()
 sess = tf.Session()
 merged = tf.summary.merge_all()
 writer = tf.summary.FileWriter("logs/",sess.graph)
 sess.run(init)
 
 for i in range(1000):
 sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
 if i%50==0:
 result = sess.run(merged,feed_dict={xs:x_data,ys:y_data})
 writer.add_summary(result,i)
 
 |