| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 
 | import tensorflow as tfimport numpy as np
 import matplotlib.pyplot as plt
 
 def add_layer(inputs, in_size, out_size, activation_function=None):
 Weights = tf.Variable(tf.random_normal([in_size, out_size]))
 biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
 Wx_plus_b = tf.matmul(inputs, Weights) + biases
 if activation_function is None:
 outputs = Wx_plus_b
 else:
 outputs = activation_function(Wx_plus_b)
 return outputs
 
 
 x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
 noise = np.random.normal(0, 0.05, x_data.shape)
 y_data = np.square(x_data) - 0.5 + noise
 
 
 
 xs = tf.placeholder(tf.float32, [None, 1])
 ys = tf.placeholder(tf.float32, [None, 1])
 
 l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
 
 prediction = add_layer(l1, 10, 1, activation_function=None)
 
 
 loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))
 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
 
 
 
 init = tf.global_variables_initializer()
 sess = tf.Session()
 sess.run(init)
 
 
 fig = plt.figure()
 ax = fig.add_subplot(1,1,1)
 ax.scatter(x_data, y_data)
 plt.ion()
 plt.show()
 
 
 for i in range(1000):
 
 sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
 if i % 50 == 0:
 
 try:
 ax.lines.remove(lines[0])
 except Exception:
 pass
 prediction_value = sess.run(prediction, feed_dict={xs: x_data})
 
 lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
 plt.pause(1)
 
 |